Members
Overall Objectives
Research Program
Application Domains
Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

Modeling of cell division data

Participants : Benoîte de Saporta, Anne Gégout-Petit.

This work is in collaboration with Laurence Marsalle (Univ. Lille 1).

A rigorous methodology is proposed to study cell division data consisting in several observed genealogical trees of possibly different shapes. The procedure takes into account missing observations, data from different trees, as well as the dependence structure within genealogical trees. Its main new feature is the joint use of all available information from several data sets instead of single data set estimation, to avoid the drawbacks of low accuracy for estimators or low power for tests on small single trees. The data is modeled by an asymmetric bifurcating autoregressive process and possibly missing observations are taken into account by modeling the genealogies with a two-type Galton-Watson process. Least-squares estimators of the unknown parameters of the processes are given and symmetry tests are derived. Results are applied on real data of Escherichia coli division and an empirical study of the convergence rates of the estimators and power of the tests is conducted on simulated data. This work is to appear in [29] .

We have also presented a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton-Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks. This work is to appear in [28] .